Regionality in the Iron Age: the case of the Sotho-Tswana

by

Thomas N. Huffman

(School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, P. O. Wits, 2050 South Africa; 107tnh@cosmos.wits.ac.za)

ABSTRACT

Regional variation at the scale of Iron Age ceramic facies concerns group identity. These regional stylistic units are considerably larger than the lineages emphasised in oral traditions, but they nevertheless help to clarify the history of precolonial farming societies. A case study of the Sotho-Tswana in southern Africa shows a significant correspondence between traditional histories and stylistic sequences. No Sotho-Tswana origin tradition mentions the Icon area; and so, this first phase of Moloko predates the oral record. Otherwise, the concordance between Sotho-Tswana history, as reconstructed by Legassick (1969), and the Moloko sequence is truly remarkable. Western Sotho-Tswana (e.g. Hurutshe and Kwena) had become separate from a Southwestern cluster (including Rolong and Tlhaping) by about the sixteenth century, and both clusters were more closely related to each other than to the Southern Sotho-Tswana (i.e. the Fokeng). The Fokeng sequence forms a separate Sub-branch of Moloko and thus requires a separate early history from Icon. Its Nguni-like features suggest that the Ntsuanatsatsi Sub-branch moved through KwaZulu-Natal before spreading onto the highveld.

This remarkable agreement is possible through an appreciation of the different scales of archaeological and historical data. Regional facies cannot help resolve specific questions about the significance of individual potters, nor specific lineages within a group. On the other hand, if individual lineages originated from different stylistic groups, then regional facies can serve as a datum for assessing the oral traditions. As the Moloko sequence shows, appropriate questions relate to large-scale material-culture groups. Regionality in the Iron Age thus involves group identity.

INTRODUCTION

Regional ceramic variation and its relationship to real social formations is an issue of some importance in the study of precolonial farming societies in southern Africa. Central to this issue is an understanding of the contrasting scales of different kinds of data. The specific claims in oral traditions, for example, contrast fundamentally with large-scale archaeological units based on material culture. Even so, it is possible to establish a meaningful relationship between archaeological and historical groups and to use this relationship to clarify precolonial history. I first outline the theory and methods appropriate to understanding regional variation in the Iron Age, and then I apply the principles and procedures to the archaeology of the Sotho-Tswana.

PART I: THEORY AND METHOD

Ceramic style, material culture and archaeological identity

Groups of people around the world have used material culture to express their identity (e.g. Boas 1927). Material culture can express group identity because it forms a repeated code of cultural symbols. They are a repeated code in at least three senses. First, the same small set of designs occur on a wide variety of objects, such as mats, baskets, drums, skin aprons and beadwork, and most groups do not have separate styles for different kinds of objects. Secondly, some designs are regularly combined with each other and with colours. These repeated designs, colours and combinations form a single
style, or large design field that is easily recognised by outsiders. Thirdly, another kind of message is communicated to people within the group. In many cases the designs and their colours have symbolic meaning. Red bands on a Venda initiation figurine, for example, can stand for young unmarried women (Blacking 1969), while in Zulu beadwork, a diamond formed by two triangles can stand for adult married women (Mertens & Schoeman 1975). To members of the group, then, the material culture style can carry messages about aspects of social organisation and daily life. It follows that the objects themselves are actively involved with the dynamics of culture.

Ceramic products are also actively involved with cultural dynamics. Shona-speaking people in Zimbabwe provide a good example. There, pots are the ‘weapons of the women’. Certain pots symbolise female roles, and the way a husband and wife treat them represents the state of their relationship (Aschwanden 1982: 201).

Pots can serve this social function because they are a material metaphor for women throughout the Bantu-speaking world. In many cases ceramic decoration parallels female clothing and scarification. A narrow crosshatched band on the ‘waist’ of a Shona pot, for example, represents a mutimwe—the cord worn around a girl’s waist to protect her fertility (Aquina 1968), while a pendant triangle filled with punctuates below the band stands for the beaded front apron worn by Shona women (Collett 1993). Zulu pots provide another example. Applied bumps represent beauty scars on a woman’s body, or bumps caused by the insertion of medicines under the skin (Mayr 1906).

Fortunately for archaeologists, ceramic products are also part of the larger design field. In a study of Gwembe Tonga, Pedi and Zulu design styles (Evers 1988), 47–75 % of the total repertoire of each group occurred on their pottery. This phenomenon also existed in the past because the wall designs on Zimbabwe culture ruins (e.g. Robinson 1959) also occur on the associated pottery, and the motifs on the famous Lydenburg Heads were also used on associated pottery (Inskeep & Maggs 1975).

Because pottery was an active part of culture and a representative part of the larger style, it can be used to identify groups of people in the archaeological record. Two conditions must be met to increase the validity of this procedure. The makers and users must belong to the same material-culture group. And secondly, the ceramic style must be complex; otherwise it will not be uniquely representative.

To clarify further this relationship between social formations and material-culture groups, it is useful to consider what kind of entities material-culture groups do not represent. First, they do not represent entities defined by blood, such as lineages, totems or clans. Stylistic groups will invariably be larger and more general than blood lines because of exogamous marriage patterns, that is most men marry women from different blood lines, and potters in any one area will have therefore come from different families. Furthermore, the diverse origin of potters was encouraged by fission: settlements of extended families regularly split to form new settlements as populations grew. Secondly, material-culture groups do not necessarily represent unified social and political organisations such as chiefdoms. The Zambezi Valley provides one example. Recently, there were at least eight separate Tonga chiefdoms on the Zimbabwe side of Lake Kariba. Membership in one or the other determined access to resources and the major framework for daily life. Yet each chiefdom shared the same material-culture style (Reynolds 1968).

This Tonga example leads us to explore a possible association with ethnicity. In general ethnic groups consist of people who consider themselves to be a limited social and
historical entity, distinct from other similar entities in multicultural situations such as urban centres. In these multicultural situations, ethnicity involves the interplay between minorities and dominant groups within the same socio-political system (Hammond-Tooke 2000). Although ceramic styles could be used to recognise ethnic interaction, they are first defined in terms of discrete clusters in discrete areas. Ceramic style groups therefore represent large-scale identities rather than ethnicity.

Whatever the case with ethnicity, the link between material-culture groups and language is more straightforward. Because language is the principal vehicle for thinking about the world and transmitting those thoughts to others, there is a vital relationship between worldview, material culture and language. Because ceramic style and the larger design field are created and learned by groups of people, the transmission of the style must be at least partially accomplished through verbal communication. Provided that the makers and users belong to the same material-culture group, it follows that the distribution of the style must also represent the distribution of a group of people who speak the same language. Because languages evolve and diversify, the linguistic scale of the group (e.g. dialect, dialect cluster) is an empirical question that must be addressed case by case. Finally, because of the vital relationship between language and material culture, ceramic style can be used to recognise and trace the movements of groups even though their size, linguistic scale and other characteristics are unknown.

Southern Africa provides an empirical example of this use. Archaeological, historical and linguistic data (see Loubser 1991 for details) show that Shona-speaking chiefdoms moved south across the Limpopo River as far as the Soutpansberg in the fifteenth century. Zimbabwe-style pottery associated with the Shona language characterised both royal and commoner settlements north of the mountains, while Moloko pottery associated with Sotho-Tswana characterised settlements to the south. Some Moloko vessels occurred in Zimbabwe settlements and vice versa. Somewhat later, perhaps about fifty years, Moloko settlements contained vessels bearing both Zimbabwe and Moloko designs. Somewhat later still, Zimbabwe and Moloko merged into the ceramic style characteristic of the Venda today. Because Venda developed from the interaction between Shona and Sotho-Tswana, the ceramic sequence most likely reflects the origin of Venda as a language and group identity.

This Venda example illustrates another point. Scholars commonly use such terms as Shona and Venda intuitively because of the difficulties involved with explicit definition. However, even though Europeans created these terms, Shona and Venda people themselves recognise the linguistic relationships between their respective dialects, and this broad understanding was sufficient for the Venda example. Thus, even though boundaries were loosely defined, the scales of the linguistic and ceramic entities were more or less equal and appropriate for the problem.

A third point emerges from this Venda example. When the Venda state dominated the area, the Venda ceramic style spread to neighbouring Phalaborwa and other lowveld Sotho (e.g. Evers 1979). Even today some lowveld Sotho maintain aspects of Venda culture such as the association of crocodile stones with chieftainship (Hammond-Tooke 1981). Thus, regional styles can spread through acculturation as well as migration.

The next point is more problematic. Iron Age migrations have apparently occurred without an interruption in the ceramic sequence. All known examples in southern Africa, however, involve Nguni speakers, for instance, the Ngoni (Collett 1987), the Northern
Transvaal Ndebele (Loubser 1994), and the Ndzunda Ndebele (Schoeman 1998). These examples are problematic in that Nguni ceramic styles are not elaborate. Indeed, the majority of most assemblages are undecorated and therefore difficult to recognise. At present, there is insufficient data to understand these situations. Nevertheless, they do not negate the present study for two main reasons. First, the movements were documented in other aspects of material culture, such as settlement patterns and hut types; and so, the connection between worldview, language and material culture remains intact. Secondly, regardless of subsequent events, the origin of regional ceramic styles still involves group identity. These exceptions then merely qualify the circumstances when ceramic style is useful. As the Venda example illustrates, it is possible to use regional styles to trace the movements of groups and their interactions with different groups. I turn now to the appropriate scale of analysis.

Ceramic analysis

To recognise groups through ceramic style, it is obviously important to choose the right variables. Considering the multiplicity of shapes, sizes, paste, lip forms, designs and design organisations, there is an almost infinite number of variables that could be classified. All classifications, it should be noted, are arbitrary in that only certain variables are used, otherwise every artefact, tree and bird, would be a unique type. In all sciences, classifications should have a purpose, and valid classifications are those useful for a specific purpose. For our culture-history purpose, it is particularly important that ceramic groups are defined by variables that truly represent groups of people.

An experiment some years ago resolved this issue. The different classifications in use in southern Africa were applied to the pottery from villages or museum collections of the Tonga in Zimbabwe, the Korekore (northern Shona), Ndau (eastern Shona), Venda and Pedi (Huffman 1980). In this experiment, valid classifications had to assign the samples to the correct control group. If a classification cannot correctly select known groups, then it has no reliability when the answers are unknown. Once again the scales of the linguistic and ceramic entities were appropriate.

Unreliable procedures treated ceramic samples as if they were random collections of unrelated traits. They included irrelevant detail, such as functional aspects, they over-emphasised individual aspects of style, such as decoration technique, or they disregarded purposeful motif combinations.

On the other hand, the experiment showed that ceramic styles could be reliably defined by considering combinations of three dimensions: (1) profile, (2) layout and (3) decoration. First, every potter is confronted with a surface to decorate, and profile, the outline of a vessel, determines the kind of surface. The potter must next consider the layout, or organisation, of the design field. At this point it is critical that archaeologists consider whole vessels rather than broken sherds. Even if this demands a considerable amount of reconstruction, the analysis of whole vessels is the only method that can determine the combinations of decorated positions that define layout. Sherds are simply inadequate. The third dimension consists of motifs, defined here as the complete design in a decoration position.

Stylistic types are formed by the three-way combination of a variable of each dimension: that is, one kind of profile, one possible layout and one set of motifs. A series of interrelated types is formed when the motifs and layouts of simple types occur
Fig. 1. Jar types of the *Icon facies*. P = decoration position; B = black; R = red. Note how the outer types are all simpler versions of the complex layout in the centre.
as components of the most complex type, that is the type with the most motif positions on the most complex profile. In Figure 1, the middle example is the most complex type and all others are less complex versions. Interrelated types such as this help to reveal the structure of ceramic style, and that is why they can be used to recognise Iron Age entities.

A complete series of interrelated types constitutes a formal definition of a ceramic entity. Such a definition should not be confused with key features that help to identify assemblages in the field. Combstamping versus incision, for example, helps to separate assemblages associated with different Sotho-Tswana groups, but these techniques do not define the styles. Only the whole range of interrelated variables—and thus the structure—forms a meaningful definition.

Analyses of stylistic structure help to connect archaeological entities with historically known groups of people. Seriations, the method developed for this purpose, are most successful when they demonstrate continuities in stylistic themes, that is the range of multidimensional types based on profile, placement and decoration.

To be fully useful, seriations and other kinds of analyses should be accompanied by a standard terminology.

Terminology

For the purposes of this study every, ceramic unit belongs to a larger cluster called a **TRADITION**. Each unit also belongs to a time segment, or Phase, while the unit itself is a **facies**. Ramifications of a facies through time could lead to new **Branches** or **Sub-branches**. The following chart and definitions illustrate the relationship between these terms, and Table 1 applies the schema to the Sotho-Tswana sequence.

<table>
<thead>
<tr>
<th></th>
<th>Sub-branch</th>
<th>Sub-branch</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td>Facies</td>
<td>Facies</td>
<td>Facies</td>
</tr>
<tr>
<td>Phase 2</td>
<td>Facies</td>
<td>Facies</td>
<td>Facies</td>
</tr>
<tr>
<td>Phase 1</td>
<td>Facies</td>
<td>Facies</td>
<td></td>
</tr>
</tbody>
</table>

SPACE			
Region 1			
Region 2			
Region 3			

COMPLEX – two or more **TRADITIONS**

TRADITION – a series of related ceramic units

Branch – one of multiple sequences within a **TRADITION**

Sub-branch – one of multiple sequences within a **Branch**

Phase – time segments of a **TRADITION**

Facies – ceramic unit
By convention, archaeologists also apply the facies name to the group of people who produced the style: thus, the Icon people produced the Icon style. Informally, some facies have been grouped together so frequently that it is still of value to refer to them collectively, for example Moloko. The term cluster serves this purpose.

Seriations that establish branches and other relationships can begin at any point in time and proceed in any direction. For example, seriations can begin with modern styles and work backwards through time, or they can proceed from the past up to the present. In the case of the Sotho-Tswana, the turmoil of the difaqane makes it best to combine the two approaches. I begin Part II by taking cognisance of historical data and then I turn to the more remote past.

PART II: SOTHO-TSWANA HISTORY AND ARCHAEOLOGY

Sotho-Tswana oral traditions

Legassick’s (1969) summary of the vast and complicated literature on Sotho-Tswana history provides a framework for understanding the relevant archaeological record. According to his analysis of the oral traditions, there are four clusters with separate origins: Hurutshe, Kgatla, Rolong and Fokeng (Fig. 2).

The Hurutshe cluster includes those groups descended from Malope and his father Masilo who lived at Rathateng near the Marico and Crocodile confluence between about AD 1440 and 1560. These groups further claim to have originated from the waterhole of Lowe in modern Botswana. Besides the Hurutshe, this cluster includes the Kwen, Ngwaketse, Ngwato and Tawana.

Many historians include the Kgatla in the Hurutshe cluster because the Kgatla refer to the Hurutshe as ‘high’ Kgatla. Legassick, however, places the origins of the Kgatla in the central highveld near modern Rustenberg and Pretoria. An important offshoot, the Pedi, is thought to have moved northeast from here in the mid-seventeenth century.

The Hurutshe themselves are supposed to have displaced the Rolong, the third cluster, from the Mosega area south of modern Zeerust. The Rolong cluster includes groups, such as the Tlhaping, who claim descent from Morolong and Noto.
Fig. 2. Early distribution of Sotho-Tswana based on oral tradition.
The fourth and final cluster, the Fokeng, was found at Ntsuanatsatsi mountain on the southern highveld by the Kwena (from the Hurutshe cluster) when they moved southeast across the Vaal River between about AD 1550 and 1650. Ntsuanatsatsi is conceptually similar to Lowe since humankind is said to have emerged from the reed bed there. The Kwena apparently legitimated their take-over by intermarriage with the Fokeng. Once together, the Kwena/Fokeng moved north across the Vaal (Fig. 2).

At this point a few cautionary notes are necessary about the traditions. As is well known, the traditions refer only to dominant lineages, each with its own *siboko*, or totem. Further, not every lineage with important traditions was accessible to literate observers. Furthermore, early written traditions, however accurate, later became intertwined with oral traditions. Despite these problems of coverage and feedback, the traditions help to link the archaeological record to broad categories of Sotho-Tswana people. Finally, it should be obvious that this study is concerned only with lineages that are supposed to be Sotho-Tswana; it is not concerned with the traditions of individual Nguni or Shona lineages which may have moved into a Sotho-Tswana area.

I move now to the results of a recent study of Sotho-Tswana archaeology. The study included modern ceramics as well as archaeological collections housed in various institutions in Botswana (National Museum, Monuments and Art Gallery) and South Africa (McGregor Museum, National Culture History Museum, Schoemansdal Museum, UNISA and University of the Witwatersrand).

A cautionary note is also necessary about the modern ceramic collections. Without revisiting the original areas, it is unknown whether the samples represent a group style or a single potter. In recent times one potter could supply a large neighbourhood, and her preferences could consequently appear to represent the range of variation in the wider style. To eliminate this problem of representation, I included samples from several sources. The analyses followed the principles and procedures outlined in Part I.

Moloko ceramics

In the date lists throughout this section, calibrations have been rounded up to the nearest five years. I have omitted the central intercepts to avoid a false sense of accuracy. Linked-dates, that is different estimates of the same occupation, are indicated with a vertical line to the left of the laboratory number. I have excluded recent segments of the calibration span for archaeological or historical reasons (*), or ended the span with a known historic date (!).

The pottery styles made by Sotho-Tswana speakers have come to be known as *Moloko* (Evers 1983). The claim for the origins of *Moloko* at the Early Iron Age site of Broederstroom (Mason 1983) has not been substantiated, and the earliest recorded facies is *Icon* (Hanisch 1979; see also Evers & Van der Merwe 1987), dating to the Late Iron Age. As Figure 1 shows, *Icon* consists of a series of related types with a decoration theme emphasising rim nicking, multiple spaced bands of texturing and colour in the neck, followed by chevrons and lozenges of colour on the shoulder. Key features include lip decoration on bowls that have the same decoration layout as jars. Sites with this pottery are limited to the Limpopo Province, and perhaps Botswana, dating to between about AD 1300 and 1450 (Fig. 3). Somewhat later dates come from Ficus, next to Makapansgat.
Fig. 3. Known distribution of the \textit{Icon} facies.
Fig. 4. Known distribution of the *Letsibogo*, *Madikwe* and *Olivantspoort* facies.
Icon itself merges with Khami pottery in the Soutpansberg area to become a transitional facies called Tavhatshena before developing into Letaba, the style associated with Venda (Loubser 1991; see also Evers 1979).

The next phase of Moloko includes at least three separate facies derived from Icon: Letsibogo in Botswana, Madikwe in the Northwest Province and Botswana, and Olifantspoort in the Magaliesberg (Fig. 4). Each facies has a similar direction of change in motifs (Fig. 5).

The Letsibogo facies was recently recorded in the Motloutse drainage of Botswana (Campbell et al. 1996; Huffman & Calabrese 1999) and in the Blouberg in the Limpopo Province (Van Schalkwyk 2000). This facies accentuates punctates as a decoration technique. The available radiocarbon dates place Letsibogo between about AD 1500 and 1700.

The Madikwe facies has been recorded from the Rooiberg area west into Botswana (Boeyens 1998; Huffman et al. 1996; Moore 1981). The ceramic style emphasises triangles and chevrons filled with stabs and finger nail impressions. These key features date to between about AD 1450 and 1700.

The third facies, Olifantspoort—Mason’s (1986) Middle Iron Age—is characterised by hatched triangles and hatched bands in triangles. These key features are found in assemblages spread from Brits to Platberg. Radiocarbon dates place the facies between about AD 1450 and 1700.
Fig. 5. Sequence of ceramic facies derived from Icon. B = black; R = red; O = orange; W = white. Stippling indicates a coloured area without a textured boundary.
In all three areas, this second phase of *Moloko* predates stone walling ascribed to Sotho-Tswana speakers. In historic times, Sotho-Tswana organised their settlements according to principles of the Central Cattle Pattern (Evers 1984; Huffman 1982; Kuper 1982). The earliest Sotho-Tswana walling expressing this pattern occurs south of the Vaal River around Ntsuanatsatsi.

Ntsuanatsatsi is the name site for Type N walling and associated pottery (Maggs 1976). This pottery differs markedly from the other three facies because of the predominance of combstamping and applique (or finger-pinching) as decoration techniques (Fig. 6). This facies also appears to lack bowls decorated with multiple spaced bands of texturing and colour that are so characteristic of *Icon*-related facies. Indeed, on present evidence *Ntsuanatsatsi* pottery cannot be derived from *Icon*, and it represents a separate Sub-branch.

There are only two dates for this new Sub-branch on the highveld.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lab. No.</th>
<th>a.d.</th>
<th>Cal. AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifafi 35/85</td>
<td>Wits 1598</td>
<td>1510±30</td>
<td>1450–1495</td>
</tr>
<tr>
<td>Olifantspoort 29/72</td>
<td>RL 243</td>
<td>1510±90</td>
<td>1430–1460</td>
</tr>
<tr>
<td>Hut A</td>
<td>RL 244</td>
<td>1600±90</td>
<td>1470–1665</td>
</tr>
<tr>
<td>Hut S</td>
<td>RL 199</td>
<td>1240±120</td>
<td>1260–1410</td>
</tr>
<tr>
<td>Hut A</td>
<td>RL 197</td>
<td>1580±90</td>
<td>1455–1660</td>
</tr>
<tr>
<td>Hut S</td>
<td>RL 196</td>
<td>1610±90</td>
<td>1475–1670</td>
</tr>
<tr>
<td>Roberts Farm 28/71</td>
<td>RL 198</td>
<td>1510±95</td>
<td>1430–1460</td>
</tr>
<tr>
<td>Roberts Farm 27/71</td>
<td>RL 197</td>
<td>1580±90</td>
<td>1455–1660</td>
</tr>
<tr>
<td>Roberts Farm 64/71</td>
<td>RL 196</td>
<td>1610±90</td>
<td>1475–1670</td>
</tr>
</tbody>
</table>

Type N settlements spread north across the Vaal into the Balfour, Suikerbosrand, Klipriviersberg and Vredefort areas (Fig. 7) where they are usually called Group I (Taylor 1979). The associated pottery was first called Uitkomst (Mason 1962), and so that name has priority (further research may show that *Uitkomst* and *Ntsuanatsatsi* pottery are the same). In the recent study of Sotho-Tswana ceramics, I examined all *Uitkomst* pottery in the Wits collection, and it is clear that *Uitkomst* pottery occurs stratigraphically under the main stonewalls at Olifantspoort (Mason 1986: 366) and Mason’s Kaditshwene south of Zeerust (Mason 1986: 671). The *Uitkomst* pottery in later Group III sites in southern Gauteng appears to be the same as in Group I. The few minor differences in design detail noted by Taylor (1979) disappear with larger samples, and therefore the walling provides finer chronological divisions.

Broadly speaking, Group I walling is characterised by a few central kraals surrounded by a smooth outer boundary wall that sometimes incorporates small stock kraals. Group III is more complex because of aggregation, that is, a settlement consists of more than one homestead. Further, the housing area is sometimes surrounded by an arced wall, or divided by straight walls, and small stock kraals are commonly located on the periphery (Taylor 1979). Group I dates from the fifteenth to the seventeenth century, while Group III dates to the eighteenth and nineteenth centuries. A gunflint in a Group III site (Loubser 1985: 86) adds further support to this late dating. In Gauteng, Group III would have ended at about AD 1823 when Mzilikazi entered the area (Rasmussen 1975).
<table>
<thead>
<tr>
<th>Site</th>
<th>Lab. No.</th>
<th>a.d.</th>
<th>Cal. AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffelshoek CD 4</td>
<td>Pta-2166</td>
<td>1600±30</td>
<td>1520–1650</td>
</tr>
<tr>
<td></td>
<td>Pta-2380</td>
<td>1650±50</td>
<td>1640–1670</td>
</tr>
<tr>
<td>Linksfield 1/78</td>
<td>GX 6165</td>
<td>1580±120</td>
<td>1445–1670</td>
</tr>
<tr>
<td></td>
<td>GX 6166</td>
<td>1630±100</td>
<td>1485–1675*</td>
</tr>
<tr>
<td>Olfantspoort 61/71</td>
<td>RL 203</td>
<td>1470±80</td>
<td>1420–1620</td>
</tr>
<tr>
<td>Olfantspoort 62/71</td>
<td>RL 202</td>
<td>1590±90</td>
<td>1460–1665</td>
</tr>
<tr>
<td>Linksfield 1/78</td>
<td>RL 201</td>
<td>1440±90</td>
<td>1410–1485</td>
</tr>
<tr>
<td>Kaditshwene 13/66</td>
<td>GrN 5137</td>
<td>1645±10</td>
<td>1650–1655</td>
</tr>
<tr>
<td>Uitkomst Cave Bed 3</td>
<td>Y 1323B</td>
<td>1650±80</td>
<td>1520–1675*</td>
</tr>
</tbody>
</table>

Fig. 6. The sequence of development in the **Nsuanatsatsi Sub-branch**. A = appliqué; B = black; R = red.
Fig. 7. Known distribution of the Uitkomst and Nsuanatsatsi facies.
As Uitkomst people spread north across the Vaal River, they must have met Olifantspoort people. The increased frequency of large combstamping in assemblages such as Tafelkop (Mason 1952) appears to reflect this interaction. Later, Uitkomst spread north to the Springbok flats (Lathy 1996) and the Rooiberg area (Hall 1985), where it is found intermixed with Phase 2 pottery of the Icon Sub-branch. This extensive mixing probably reflects intensive interaction. The available dates place this mixed Rooiberg facies in the seventeenth and eighteenth centuries, before the difaqane.

Presumably, the people responsible for Uitkomst pottery introduced stone walling to the Icon Sub-branch because some Rooiberg sites with mixed pottery contain walling similar to Type N (Hall 1985). Furthermore, ceramic facies derived from Madikwe and Olifantspoort are associated with walling for the first time.

Madikwe pottery developed into Mason’s (1962) Buispoort and is found in settlements with walling called Group II (Taylor 1984) or Bupye (Mason 1986). This group includes the well-known sites of Boschoek (Huffman 1986), Buffelshoek (Taylor 1979), Kaditshwene (Boeyens 2000), Molokwane (Pistorius 1992) and Olifantspoort (Mason 1986). Some of these settlements were inhabited at the beginning of the Historic Period and then abandoned during Mzilikazi’s rule between 1823 and 1838.

The Olifantspoort facies developed into the kind of pottery recorded at Platberg, or Thabeng (see Mason 1986) and Type Z sites in the Free State (see Maggs 1976). Although
there are few radiocarbon readings, the developmental sequence eliminates dates before the eighteenth century. The remaining radiocarbon dates place this Thabeng facies at the beginning of the Historic Period.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lab. No.</th>
<th>a.d.</th>
<th>Cal. AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ox 1</td>
<td>Gx 1462 (bone)</td>
<td>1635±95</td>
<td>1495–1800</td>
</tr>
<tr>
<td>Omb 1</td>
<td>Pta-963 (bone)</td>
<td>1880±60</td>
<td>1890–1915*</td>
</tr>
<tr>
<td>Platberg 32/71</td>
<td>RL 195</td>
<td>1720±90</td>
<td>1650–1885*</td>
</tr>
</tbody>
</table>

By the early Historic Period, Ntsuanatsatsi had evolved south of the Vaal River into assemblages exemplified by Makgwareng (Dreyer 1992; Maggs 1976). Combstamped triangles, finger pinching and applique continued as the dominant techniques for producing similar motifs as before (Fig. 6). Associated with Type V walling (Fig. 8), radiocarbon dates begin this facies in the seventeenth and eighteenth centuries. Historical records suggest it had ended by AD 1850.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lab. No.</th>
<th>a.d.</th>
<th>Cal. AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makgwareng</td>
<td>Pta-1123</td>
<td>1720±50</td>
<td>1660–1815*</td>
</tr>
<tr>
<td></td>
<td>Pta-1122</td>
<td>1810±60</td>
<td>1680–1850!</td>
</tr>
<tr>
<td></td>
<td>Pta-134</td>
<td>1810±50</td>
<td>1685–1850!</td>
</tr>
<tr>
<td></td>
<td>Pta-133</td>
<td>1880±50</td>
<td>1895–present</td>
</tr>
<tr>
<td>OU 2, unit 2</td>
<td>Pta-402</td>
<td>1665±50</td>
<td>1645–1795</td>
</tr>
<tr>
<td></td>
<td>Pta-403</td>
<td>1870±50</td>
<td>1890–present</td>
</tr>
<tr>
<td>OND 2</td>
<td>GX 1463</td>
<td>1735±85</td>
<td>1655–1890*</td>
</tr>
<tr>
<td>Stoompomp</td>
<td>Pta-1161</td>
<td>1840±50</td>
<td>1700–1850*</td>
</tr>
<tr>
<td></td>
<td>Pta-1097</td>
<td>1890±45</td>
<td>too young</td>
</tr>
<tr>
<td></td>
<td>Pta-1088</td>
<td>1920±40</td>
<td>too young</td>
</tr>
<tr>
<td>Winburg DB 11</td>
<td>Pta-4138</td>
<td>1710±45</td>
<td>1660–1810*</td>
</tr>
<tr>
<td>Winburg DB 14</td>
<td>Pta-4161</td>
<td>1790±45</td>
<td>1680–1850!</td>
</tr>
</tbody>
</table>

Early historic records allow us to integrate this archaeological record with Sotho-Tswana oral histories.

Archaeology and History

Early historic records identify some Sotho-Tswana groups with particular archaeological sites. Thus, we know from Campbell (1822) that the Hurutshe capital was at Kaditshwene in the 1820s (see Boeyens 2000 for the archaeological identification of this capital). Similarly, we know that various Kwena groups lived at Molokwane (Pistorius 1992) and Olifantspoort 20/71 (Mason 1974 1986), and in the Suikerbosrand (Rasmussen 1975). All these areas have Group II walling and Buispoort pottery. Because both Hurutshe and Kwena belong to Western Sotho-Tswana, we can then trace that cluster back to the Madikwe facies and the fifteenth or sixteenth century (Table 2). This is the same depth of time determined from oral traditions.

Burchell (1824) records the Thaping at Ditakong, and Broadbent shows that Rolong lived on top of Platberg (Maggs 1972; Mason 1962), while the Kubung occupied several known places in the Free State such as OMB 1 (Webb in Maggs 1976). These related groups form a Southwestern Sotho-Tswana cluster that can be identified with Thabeng pottery and Type Z walling (see Maggs 1976). This cluster can then be traced back to Olifantspoort and the fifteenth or sixteenth century.

The present study has not directly addressed the question of Kgatla origins. Even so, it has narrowed the number of possibilities. If Kgatla identity developed in the Rustenburg-Pretoria area, as Legassick concluded, then the Kgatla were part of the
Fig. 8. Distribution of eighteenth and nineteenth century Sotho-Tswana stone walling included in the study.
Southwestern cluster. Otherwise, they were part of the Hurutshe cluster, as others have thought, that moved through that region. On archaeological grounds, then, the Kgatla did not form a separate cluster equal to Southwestern or Western Sotho-Tswana.

Greater clarity has been reached on the Fokeng. Oral traditions clearly identify the fifteenth to sixteenth century settlement at Ntsuanatsatsi as a capital of the Fokeng, and this identification has been accepted for some time (Maggs 1976). According to Bryant (in Legassick 1969), the Fokeng were originally MboNguni. Although this view may be extreme, ceramic features such as applique decoration indicate Nguni interaction (Dreyer 1992: 381). Even the beehive huts recorded on Type N and V sites probably have a similar origin. Whatever the early history of the Fokeng, the Kwena were supposed to have joined them, and then the newly-merged Kwena/Fokeng were supposed to have moved north across the Vaal in the mid-seventeenth century (Ellenberger in Legassick 1969). The archaeological evidence, however, only supports a Fokeng/Western Sotho-Tswana merger at that time much further to the north (the Rooiberg facies; Table 2).

Ntsuanatsatsi and Group I sites with Uitkomst pottery therefore appear to be entirely Fokeng. Although the stonewall sequence demonstrates mutual interaction, Uitkomst sites appear not to have merged with Western Sotho-Tswana in southern Gauteng even during the difaqane. Further north in the Pilansberg, Mason (1986: 690) recovered both Uitkomst and Buispoort pottery from Site 33/81. Without further investigations, however, it is not clear if this is evidence for interaction or two different phases of occupation. If two phases, then the Fokeng living today near Rustenberg, as Legassick (1969: 113) notes, may well be direct descendants from the original movement across the Vaal. North of the Vaal, no other Fokeng group appears to have survived.

The difaqane of course caused disjunctions throughout southern Africa. Some groups realigned their political affiliations, some formed new identities, while others disappeared altogether. The close juxtaposition of Fokeng (Group III) and Kwena (Group II) settlements near the Vaal demonstrates intense interaction even though they did not merge. For example, in one area in the Klipriviersberg, one Type Z (or Group II) settlement lies within a major Group III community (Mason 1986: 559), while the occasional Uitkomst vessel is found in Group II settlements in the Suikerbosrand.
The disjunctions caused by the *difaqane* also complicate the situation south of the Vaal. The present study has not yet encompassed the Free State, but it is clear that archaeological support for a Kwena/Fokeng merger will be based on diagnostic material-culture signatures such as those outlined here. The presence of Kwena should be marked by *Madikwe* pottery.

ACKNOWLEDGEMENTS

The Department of Environmental Affairs and Tourism helped support this research. I thank the collection managers in the various institutions in Botswana and South Africa for access to material under their care. Denise Voorvelt helped to prepare the manuscript and Wendy Voorvelt helped to prepare the illustrations. This paper was first presented at the biennial conference of the Southern African Association of Archaeologists, April, 2000, University of the Witwatersrand, Johannesburg.

REFERENCES

TAYLOR, M. O. V. 1979. Late Iron Age settlements on the northern edge of the Vredefort Dome. MA dissertation, University of the Witwatersrand.
